The spectral norms of geometric circulant matrices with the generalized k-Horadam numbers
نویسنده
چکیده
In this paper, we use the algebra methods, the properties of the r-circulant matrix and the geometric circulant matrix to study the upper and lower bound estimate problems for the spectral norms of a geometric circulant matrix involving the generalized k-Horadam numbers, and we obtain some sharp estimations for them. We can also give a new estimation for the norms of a r-circulant matrix involving the generalized k-Horadam numbers.
منابع مشابه
On the Basic Properties of g-Circulant Matrix via Generalized k-Horadam Numbers
In this paper, by considering the g-circulant matrix Cn,g(H) = gcirc(Hk,1,Hk,2, . . . ,Hk,n) whose entries are the generalized k-Horadam numbers, we present a new generalization to compute spectral norm, determinant and inverse of Cn,g(H). In fact the results in here are the most general statements to obtain the inverses and determinants in such matrices having the elements of all second order ...
متن کاملOn the spectral norms of some special g-circulant matrices
In the present paper, we give upper and lower bounds for the spectral norm of g-circulant matrix, whose the rst row entries are the classical Horadam numbers U (a,b) i . In addition, we also establish an explicit formula of the spectral norm for g-circulant matrix with the rst row ([U (a,b) 0 ] , [U (a,b) 1 ] , · · · , [U (a,b) n−1 ]).
متن کاملOn the Norms of Circulant Matrices with the (k,h)-Fibonacci and (k,h)-Lucas Numbers
In this paper, we give upper and lower bounds for the spectral norms of circulant matrices A n = Circ(F n−1) and B n = Circ(L (k,h) n and L (k,h) n are the (k, h)-Fibonacci and (k, h)-Lucas numbers, then we obtain some bounds for the spectral norms of Kronecker and Hadamard products of these matrices.
متن کاملSpectral norms of circulant-type matrices involving some well-known numbers
In this paper, we investigate spectral norms for circulant-type matrices, including circulant, skewcirculant and g-circulant matrices. The entries are product of binomial coefficients with Fibonacci numbers and Lucas numbers, respectively. We obtain identity estimations for these spectral norms. Employing these approaches, we list some numerical tests to verify our results.
متن کاملOn the Spectral Norms of r-Circulant Matrices with the k-Fibonacci and k-Lucas Numbers
Abstract In this paper, we consider the k -Fibonacci and k -Lucas sequences {Fk,n}n∈N and {Lk,n}n∈N . Let A = Cr(Fk,0, Fk,1, · · · , Fk,n−1) and B = Cr(Lk,0, Lk,1, · · · , Lk,n−1) be r -circulant matrices. Afterwards, we give upper and lower bounds for the spectral norms of matrices A and B. In addition, we obtain some bounds for the spectral norms of Hadamard and Kronecker products of these ma...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
دوره 2018 شماره
صفحات -
تاریخ انتشار 2018